Gene Locus & disulfide bridge- Gene locus is where all the genes are located. Disulfide Bridge is a covalent bond formed between the thiol groups of two cysteine residues, usually in the polypeptide chains of protein. These bonds contribute to tertiary structure of proteins. They are related to each other because genes express proteins and proteins determine traits.
Nonjunction &9-triplet pattern- Nondisjunction is the failure of chromosome pairs to separate properly during cell division which means it will destroy the MTOC. When the MTOC is being damaged, it will not able to help cells get through meiosis or mitosis; as a result, chromosomes will not be able to separate properly during cell division.
Autosome & Steroid- Autosomes are chromosomes that are not sex chromosomes. However, there are many kinds of steroid, and sex hormones, which are androgens and oestrogens, are composed by the adrenal cortex. Steroid is used to produce autosomes by using androgens and oestrogens.
Polygenic & Glycocalyx- Glycocalyx is a layer of carbohydrate on the surface of the plasma membrane of most eukaryotic cells. It plays a role in cell to cell adhesion and in regulating the exchange of materials between a cell and its environment. When the inheritance of a phenotypic characteristic that varies in degree and attributed to the interactions between two or more genes and their environment, glycocalyx will regulate the exchange of materials between cell and its environment.
The law of segregation is the separation of homologous pairs during meiosis, so there will be two versions of each gene, referred to as alleles. The law of assortment means that each chromosome inherits independently of each other. Autosome will be separated during the law of segregation and creates a pairs of sex chromosomes. From there, the sex chromosomes will inherit independently of each other.
No comments:
Post a Comment